Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38648136

RESUMO

The development of high-temperature nondestructive testing (NDT) requires ultrasonic transducers with good temperature resistance and high sensitivity for improved detection efficiency. Piezoelectric composite can improve the performance of transducers because of its high electromechanical coupling coefficient and adjustable acoustic impedance. In this study, 1-3-2 composites and 1-3-2 high-temperature composite ultrasonic transducers (HTCUTs) based on 0.36BiScO3-0.64PbTiO3 (BSPT), which are preferred piezoelectric materials at 200°C-300°C, and high-temperature epoxy with a center frequency of 6 MHz were designed and fabricated. From 25°C to 250°C, 1-3-2 composites show a higher electromechanical coupling coefficient kt especially at high temperatures (~0.53 at 25°C, and ~0.64 at 250°C) than monolithic BSPT (~0.5). The signal of the pulse-echo response of 1-3-2 HTCUTs is distinguishable up to 250 °C and remains stable (Vpp~500 mV) below 150°C, exhibiting higher sensitivity (improved by 7 dB) than that of monolithic BSPT high-temperature ultrasonic transducers (HTUTs). Bandwidth has been greatly enhanced especially at high temperatures (~103250°C) compared with that of monolithic BSPT HTUTs(~30250°C). To verify the excellent performance, B-mode scanning imaging measurement of a stepped steel block and defect location detection of a steel block were performed, showing the potential for high-temperature NDT applications.

2.
Adv Mater ; : e2400421, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430204

RESUMO

Thanks to the extensive efforts toward optimizing perovskite crystallization properties, high-quality perovskite films with near-unity photoluminescence quantum yield are successfully achieved. However, the light outcoupling efficiency of perovskite light-emitting diodes (PeLEDs) is impeded by insufficient light extraction, which poses a challenge to the further advancement of PeLEDs. Here, an anisotropic multifunctional electron transporting material, 9,10-bis(4-(2-phenyl-1H-benzo[d]imidazole-1-yl)phenyl) anthracene (BPBiPA), with a low extraordinary refractive index (ne ) and high electron mobility is developed for fabricating high-efficiency PeLEDs. The anisotropic molecular orientations of BPBiPA can result in a low ne of 1.59 along the z-axis direction. Optical simulations show that the low ne of BPBiPA can effectively mitigate the surface plasmon polariton loss and enhance the photon extraction efficiency in waveguide mode, thereby improving the light outcoupling efficiency of PeLEDs. In addition, the high electron mobility of BPBiPA can facilitate balanced carrier injection in PeLEDs. As a result, high-efficiency green PeLEDs with a record external quantum efficiency of 32.1% and a current efficiency of 111.7 cd A-1 are obtained, which provides new inspirations for the design of electron transporting materials for high-performance PeLEDs.

3.
Small ; : e2307500, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940631

RESUMO

The promising cyclometalated iridium (III) complexes have been proved to possess great potential in vacuum-deposited organic light-emitting diodes (OLEDs) applications for full-color displays and white solid-state lighting sources. Herein, based on the unique bidentate ligand of dibenzo[a,c]phenazine (dbpz) group with strong conjugated effect of aromatic rings for red emission, four novel [3+2+1] coordinated iridium (III) emissive materials have been rationally designed and synthesized. The monodentate ligands of -CN and -OCN have been effectively employed to tune the deep-red emission of 628-675 nm with high photoluminescence quantum yields up to 98%. Moreover, all devices displayed deep-red color coordinates ranging from (0.675, 0.325) to (0.716, 0.284), which is close to the standard-red color coordinates of (0.708, 0.292), as recommended by International Telecommunication Union Radiocommunication (ITU-R) BT.2020. The device based on n BuIr(dbpz)CN with an exciplex cohost has exhibited maximum external quantum efficiencies of 20.7% and good stability. With n BuIr(dbpz)CN as an effective sensitizer, the n BuIr(dbpz)OCN based phosphorescent OLED devices have successfully demonstrated cascading energy transfer processes, contributing to pure red emission with maximum luminance as high as 6471 cd m-2 . Therefore, this work has been successfully demonstrated rational molecular design strategy of [3+2+1] iridium complexes to obtain highly efficient deep-red electrophosphorescent emission.

4.
Adv Sci (Weinh) ; 10(29): e2301112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653609

RESUMO

Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.

5.
Micromachines (Basel) ; 13(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36014168

RESUMO

Lead-free environmentally friendly piezoelectrical materials with enhanced piezoelectric properties are of great significance for high-resolution ultrasound imaging applications. In this paper, Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y (NBT-Nb-Mn) bismuth-layer-structured ceramics were prepared by solid-phase synthesis. The crystallographic structure, micromorphology, and piezoelectrical and electromechanical properties of NBT-Nb-Mn ceramics were examined, showing their enhanced piezoelectricity (d33 = 33 pC/N) and relatively high electromechanical coupling coefficient (kt = 0.4). The purpose of this article is to describe the development of single element ultrasonic transducers based on these piezoelectric ceramics. The as-prepared high-frequency tightly focused transducer (ƒ-number = 1.13) had an electromechanical coupling coefficient of 0.48. The center frequency was determined to be 37.4 MHz and the -6 dB bandwidth to be 47.2%. According to the B-mode imaging experiment of 25 µm tungsten wires, lateral resolution of the transducer was calculated as 56 µm. Additionally, the experimental results were highly correlated to the results simulated by COMSOL software. By scanning a coin, the imaging effect of the transducer was further evaluated, demonstrating the application advantages of the prepared transducer in the field of high-sensitivity ultrasound imaging.

6.
Materials (Basel) ; 15(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683271

RESUMO

To further improve the mechanical properties of H13 steel at room and high temperatures, its precipitates were regulated based on the Thermo-Calc results. Scanning electron microscope (SEM), electron backscattering diffraction (EBSD), transmission electron microscope (TEM), and X-ray diffraction (XRD) Rietveld refinement were used to study the effect of the intercritical annealing on the microstructure and mechanical properties of H13 steel. The results show that the intercritical annealing at 850~95 °C increased the VC volume fraction from 2.23 to 3.03~3.48%. Increasing the VC volume fraction could inhibit the M7C3 precipitation from 10.01 to 6.63~5.72% during tempering. A large amount of VC also promoted the M23C6 precipitation during tempering at higher dislocation densities. The intercortical annealing simultaneously increased the elongation of H13 steel. An excellent combination (room temperature: ultimate tensile strength (UTS) of 898 MPa and total elongation (TEL) of 19.35%, 650 °C: UTS of 439 MPa, and TEL of 27.80%) could be obtained when intercritical annealing is performed at 900 °C. Meanwhile, after aging at 650 °C for 128 h, the room temperature UTS and TEL decreased by only 31 MPa and 0.52%, respectively.

7.
Micromachines (Basel) ; 12(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34945406

RESUMO

Cobalt-modified 0.40Bi(Sc3/4In1/4)O3-0.58PbTiO3-0.02Pb(Mg1/3Nb2/3)O3 ceramics (abbreviated as BSI-PT-PMN-xCo) were produced by conventional two-step solid-state processing. The phase structure, micro structure morphology, and electrical properties of BSI-PT-PMN-xCo were systematically studied. The introduction of Co ions exerted a significant influence on the structure and electrical properties. The experiment results demonstrated that Co ions entered the B-sites of the lattice, resulting in slight lattice distortion and a smaller lattice constant. The average grain size increased from ~1.94 µm to ~2.68 µm with the increasing Co content. The optimized comprehensive electrical properties were obtained with proper Co-modified content 0.2 wt.%. The Curie temperature (Tc) was 412 °C, the piezoelectric constant (d33) was 370 pC/N, the remnant polarization (Pr) was 29.2 µC/cm2, the relatively dielectric constant (εr) was 1450, the planar electromechanical coupling coefficient (kp) was 46.5, and the dielectric loss (tanδ) was 0.051. Together with the enhanced DC resistivity of 109 Ω cm under 300 °C and good thermal stability, BSI-PT-PMN-0.2Co ceramic is a promising candidate material for high-temperature piezoelectric applications.

8.
Small ; 16(23): e1907368, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32372461

RESUMO

The development of high-performance but low-cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal-air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co-Fe carbides by pyrolyzing the Co-Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal-sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2 . Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co-Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn-air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...